from math import tan, radians

from pygame import Surface
from pygame.draw import line

from lib.pgfw.pgfw.GameChild import GameChild

class Mask(GameChild, Surface):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.display_surface = self.get_display_surface()
        self.load_configuration()
        self.init_surface()
        self.set_background()
        self.reset()

    def load_configuration(self):
        config = self.get_configuration("land")
        self.height = config["height"]
        self.spacing_factor = config["spacing-factor"]
        self.gradient = config["gradient"]
        self.x_step = config["x-step"]
        self.velocity_ratio = config["velocity-ratio"]

    def init_surface(self):
        Surface.__init__(self, (self.get_display_surface().get_width(),
                                self.height))

    def set_background(self):
        background = Surface(self.get_size())
        background.fill((0, 0, 0))
        self.background = background

    def reset(self):
        self.x_offset = 0

    def update(self):
        self.clear()
        self.draw_y()
        self.draw_x()

    def clear(self):
        self.blit(self.background, (0, 0))

    def draw_y(self):
        yy = 0
        ii = 0
        rect = self.get_rect()
        while yy < rect.bottom:
            line(self, (255, 255, 255), (0, yy), (rect.right, yy))
            yy += int(self.spacing_factor ** ii)
            ii += 1

    def draw_x(self):
        gradient = self.gradient
        step = self.x_step
        rect = self.get_rect()
        edge = rect.right
        xx = int(self.x_offset) + step
        adjacent = rect.h
        while xx < edge:
            angle = (edge - float(xx)) / edge * 2 * gradient + (90 - gradient)
            opposite = int(tan(radians(90 - angle)) * adjacent)
            line(self, (255, 255, 255), (xx, 0),
                 (xx + opposite, adjacent))
            xx += step
        self.decrement_x_offset()

    def decrement_x_offset(self):
        self.x_offset -= self.parent.parent.velocity[0] * self.velocity_ratio
        if self.x_offset <= -self.x_step:
            self.x_offset += self.x_step
from random import randrange, randint
from os.path import join

from pygame import PixelArray

from lib.pgfw.pgfw.Sprite import Sprite
from food_spring.level.planet.moon.Moons import Moons

class Planet(Sprite):

    def __init__(self, parent):
        Sprite.__init__(self, parent)
        self.load_configuration()
        self.load_image()
        self.place()
        self.register(self.scramble, interval=self.interval)
        self.play(self.scramble)
        self.moons = Moons(self)

    def load_configuration(self):
        config = self.get_configuration("planet")
        self.root = config["path"]
        self.interval = config["interval"]
        self.shifts = config["shifts"]
        self.offset = config["offset"]
        self.extension = config["extension"]

    def load_image(self):
        path = self.get_resource(join(self.root, "%i.%s" % (self.parent.index,
                                                            self.extension)))
        self.load_from_path(path, True)

    def place(self):
        self.rect.center = self.display_surface.get_width() / 2, \
                           self.parent.land.top - self.offset

    def scramble(self):
        surface = self.get_current_frame()
        pixels = PixelArray(surface)
        width, height = self.location.size
        x = randrange(0, width)
        y = randrange(0, height)
        components = surface.unmap_rgb(pixels[x][y])
        if components[3] == 255:
            for _ in xrange(self.shifts):
                dx, dy = randint(-1, 1), randint(-1, 1)
                nx, ny = x + dx, y + dy
                if nx < 0 or ny < 0 or nx >= width or ny >= height:
                    break
                if surface.unmap_rgb(pixels[nx][ny])[3] == 255:
                    pixels[nx][ny] = components
                    x = nx
                    y = ny
        del pixels

    def update(self):
        Sprite.update(self)
        self.moons.update()
from random import randint

from lib.pgfw.pgfw.GameChild import GameChild
from food_spring.level.planet.moon.Moon import Moon

class Moons(GameChild, list):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        for _ in xrange(randint(*self.get_configuration("moon", "count"))):
            self.append(Moon(self))

    def update(self):
        for moon in self:
            moon.update()
from random import randint, randrange
from glob import glob
from os.path import join

from pygame import Color, PixelArray

from lib.pgfw.pgfw.Sprite import Sprite

class Moon(Sprite):

    def __init__(self, parent):
        Sprite.__init__(self, parent)
        self.load_configuration()
        self.set_frames()
        self.tint()
        self.place()
        self.set_framerate(randint(*self.interval))
        self.frame_index = randrange(0, len(self.frames))

    def load_configuration(self):
        config = self.get_configuration("moon")
        self.tint_level = config["tint-level"]
        self.interval = config["interval"]
        self.margin = config["margin"]
        self.path = self.get_resource(config["path"])

    def set_frames(self):
        for path in glob(join(self.path, "*.png")):
            self.load_from_path(path, True, True)

    def tint(self):
        color = Color(0, 0, 0)
        color.hsla = randint(0, 360), 100, 50
        level = self.tint_level
        transparent_color = self.get_current_frame().get_colorkey()
        for frame in self.frames:
            pixels = PixelArray(frame)
            for x in xrange(len(pixels)):
                for y in xrange(len(pixels[x])):
                    if pixels[x][y] != transparent_color:
                        r, g, b, a = frame.unmap_rgb(pixels[x][y])
                        r = self.tint_component(r, color.r)
                        g = self.tint_component(g, color.g)
                        b = self.tint_component(b, color.b)
                        pixels[x][y] = r, g, b, a

    def tint_component(self, component, tint):
        return self.tint_level * (tint - component) + component

    def place(self):
        margin = self.margin
        box = self.parent.parent.location.inflate([margin] * 2)
        moons = [moon.location.inflate([margin] * 2) for moon in self.parent]
        self.set_center()
        location = self.location
        while location.colliderect(box) or location.collidelist(moons) != -1:
            self.set_center()

    def set_center(self):
        display = self.display_surface.get_rect()
        margin = self.margin
        x = randrange(margin, display.w - margin)
        y = randrange(margin, self.parent.parent.parent.land.top - margin)
        self.location.center = x, y
216.73.216.141
216.73.216.141
216.73.216.141
 
August 12, 2013

I've been researching tartan/plaid recently for decoration in my updated version of Ball & Cup, now called Send. I want to create the atmosphere of a sports event, so I plan on drawing tartan patterns at the vertical edges of the screen as backgrounds for areas where spectator ants generate based on player performance. I figured I would make my own patterns, but after browsing tartans available in the official register, I decided to use existing ones instead.

I made a list of the tartans that had what I thought were interesting titles and chose 30 to base the game's levels on. I sequenced them, using their titles to form a loose narrative related to the concept of sending. Here are three tartans in the sequence (levels 6, 7 and 8) generated by an algorithm I inferred by looking at examples that reads a tartan specification and draws its pattern using a simple dithering technique to blend the color stripes.


Acadia


Eve


Spice Apple

It would be wasting an opportunity if I didn't animate the tartans, so I'm thinking about animations for them. One effect I want to try is making them look like water washing over the area where the ants are spectating. I've also recorded some music for the game. Here are the loops for the game over and high scores screens.

Game Over

High Scores