from random import random

from pygame.mixer import Sound

from _send.pgfw.GameChild import GameChild

class Track(GameChild):

    def __init__(self, parent, path, volume):
        GameChild.__init__(self, parent)
        self.path = path
        self.volume = volume
        self.channel = None
        self.frequency = self.get_configuration("title", "pan-frequency")
        self.set_sound()

    def set_sound(self):
        sound = Sound(self.path)
        sound.set_volume(self.volume)
        self.sound = sound

    def play(self):
        self.channel = self.sound.play(-1)

    def update(self):
        if self.channel and random() < self.frequency:
            self.parent.set_random_panning(self.channel)
from re import match

from _send.pgfw.GameChild import GameChild
from _send.tartan.Tartan import Tartan

class Tartans(GameChild, dict):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.load()

    def load(self):
        patterns = file(self.get_resource("tartan", "path"))
        while True:
            line = patterns.readline()
            if not line:
                break
            name = line.strip()
            self[name] = Tartan(self, name, patterns)
from re import match, sub
from itertools import izip, chain

from pygame import Surface, Color, PixelArray
from pygame.image import save

from _send.pgfw.GameChild import GameChild

class Tartan(GameChild, Surface):

    def __init__(self, parent, name=None, patterns=None):
        GameChild.__init__(self, parent)
        self.fields = self.get_game().fields
        self.name = name
        self.load_configuration()
        if patterns is not None:
            self.load(patterns)
        self.init_surface(0)
        # self.generate(store=True)

    def load_configuration(self):
        config = self.get_configuration("tartan")
        self.thread_size = config["thread-size"]
        self.sample_size = config["sample-size"]

    def load(self, patterns):
        self.sett = self.parse_sett(patterns.readline())
        self.asymmetric = bool(int(patterns.readline().strip()))
        self.palette = self.parse_palette(patterns)

    def parse_sett(self, line):
        sett = []
        size = 0
        for stripe in line.strip().split(" "):
            identifier, width = match("([A-Z]+)([0-9]+)", stripe).groups(0)
            width = int(width)
            size += width
            sett.append(Stripe(identifier, width))
        self.sett_width = size
        return sett

    def parse_palette(self, patterns):
        palette = {}
        while True:
            line = patterns.readline().strip()
            if not line:
                break
            for color in line.split(";"):
                color = color.strip()
                if color:
                    assignment = map(str.strip, color.split("="))
                    palette[assignment[0]] = Color("#%sFF" % assignment[1][:6])
        return palette

    def generate(self, scale=None, store=False):
        if not scale:
            scale = self.get_default_scale()
        surface = self.select_surface(scale, store)
        self.paint(scale, surface)
        if not store:
            return surface

    def get_default_scale(self):
        return self.fields.get(self.name).tartan_scale

    def select_surface(self, scale, store):
        size = self.get_size(scale)
        if store:
            self.init_surface(size)
            surface = self
        else:
            surface = Surface((size, size))
        return surface

    def get_size(self, scale):
        sett = self.sett
        sett_width = self.sett_width
        if not self.asymmetric:
            size = scale * (sett_width * 2 - sett[-1].width - sett[0].width)
        else:
            size = scale * sett_width
        return size

    def init_surface(self, size):
        Surface.__init__(self, (size, size))

    def paint(self, scale, surface):
        offset, overflow = 0, 0
        sett = self.sett
        pixels = PixelArray(surface)
        for stripe in self.get_stripes_generator(scale):
            width = stripe.width
            color = self.palette[stripe.identifier]
            if overflow:
                width -= 1 - overflow
                blend = self.blend_colors(previous_color, color, overflow)
                self.draw_line(pixels, offset, 1, blend)
                offset += 1
            if width >= 1:
                truncated = int(width)
                self.draw_line(pixels, offset, truncated, color)
                offset += truncated
                overflow = width - truncated
            else:
                overflow = max(width, 0)
            previous_color = color
        del pixels

    def get_stripes_generator(self, scale):
        sett = self.sett
        if not self.asymmetric:
            return (stripe.get_scaled(scale) for stripe in
                    chain(sett[:-1], reversed(sett[1:])))
        return (stripe.get_scaled(scale) for stripe in sett)

    def draw_line(self, pixels, offset, width, color):
        thread_size = self.thread_size
        operator = thread_size * 2
        for y in xrange(offset, min(offset + width, len(pixels[0]))):
            for x in xrange(0, len(pixels[0])):
                if (x + y) % operator < thread_size:
                    pixels[x][y] = color
        for x in xrange(offset, min(offset + width, len(pixels[0]))):
            for y in xrange(0, len(pixels[0])):
                if (x + y) % operator >= thread_size:
                    pixels[x][y] = color

    def blend_colors(self, alpha, beta, ratio):
        alpha = (component * ratio for component in alpha)
        beta = (component * (1 - ratio) for component in beta)
        blend = [int(sum(components)) for components in izip(alpha, beta)]
        return Color(*blend)

    def write_sample(self):
        step = self.get_width()
        shift = step / 2
        count = self.sample_size
        size = step * count
        offsets = range(-shift, size + step, step)
        sample = Surface((size, size))
        for x in offsets:
            for y in offsets:
                sample.blit(self, (x, y))
        path = "resource/local/img/tartan/generated/%02i-%s.png" % \
               (self.fields.get_index(self.name) + 1,
                self.get_filesystem_formatted_name())
        save(sample, path)

    def get_filesystem_formatted_name(self):
        return sub("[^\w-]", "_", self.name.replace(" ", "-"))


class Stripe:

    def __init__(self, identifier, width):
        self.identifier = identifier
        self.width = width

    def __repr__(self):
        return "<%s at %s (%s %.3f)>" % \
               (self.__class__.__name__, hex(id(self)), self.identifier,
                self.width)

    def get_scaled(self, scale):
        return Stripe(self.identifier, self.width * scale)
216.73.216.47
216.73.216.47
216.73.216.47
 
June 29, 2013

A few weeks ago, for Fishing Jam, I made a fishing simulation from what was originally designed to be a time attack arcade game. In the program, Dark Stew, the player controls Aphids, an anthropod who fishes for aquatic creatures living in nine pools of black water.



Fishing means waiting by the pool with the line in. The longer you wait before pulling the line out, the more likely a creature will appear. Aside from walking, it's the only interaction in the game. The creatures are drawings of things you maybe could find underwater in a dream.

The background music is a mix of clips from licensed to share songs on the Free Music Archive. Particularly, Seed64 is an album I used a lot of songs from. The full list of music credits is in the game's README file.

I'm still planning to use the original design in a future version. There would be a reaction-based mini game for catching fish, and the goal would be to catch as many fish as possible within the time limit. I also want to add details and obstacles to the background, which is now a little boring, being a plain, tiled, white floor.

If you want to look at all the drawings or hear the music in the context of the program, there are Windows and source versions available. The source should work on any system with Python and Pygame. If it doesn't, bug reports are much appreciated. Comments are also welcome :)

Dark Stew: Windows, Pygame Source

I wrote in my last post that I would be working on an old prototype about searching a cloud for organisms for Fishing Jam. I decided to wait a while before developing that game, tentatively titled Xenographic Barrier. Its main interactive element is a first-person scope/flashlight, so I'd like to make a Wii version of it.

I'm about to start working on a complete version of Ball & Cup. If I make anything interesting for it, I'll post something. There are a lot of other things I want to write about, like game analyses, my new GP2X and arcades in Korea, and there's still music to release. Lots of fun stuff coming!