from os import makedirs
from os.path import exists, join
from tempfile import TemporaryFile
from time import strftime

from pygame.image import tostring, frombuffer, save
from pygame.time import get_ticks

from GameChild import GameChild

class VideoRecorder(GameChild):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        if self.requested:
            self.display_surface = self.get_display_surface()
            self.delegate = self.get_delegate()

    def set_requested(self):
        self.requested = self.get_configuration("video-recordings")["enable"] \
                         or self.check_command_line("-enable-video")

    def load_configuration(self):
        config = self.get_configuration("video-recordings")
        self.root = config["path"]
        self.directory_name_format = config["directory-name-format"]
        self.file_extension = config["file-extension"]
        self.frame_format = config["frame-format"]
        self.framerate = config["framerate"]

    def reset(self):
        self.recording = False
        self.frame_length = None
        self.frames = None
        self.last_frame = 0

    def respond(self, event):
        compare =
        if compare(event, "record-video"):
        elif compare(event, "reset-game"):

    def toggle_record(self):
        recording = not self.recording
        if recording:
            self.frame_length = len(self.get_string())
            self.frames = TemporaryFile()
        self.recording = recording

    def get_string(self):
        return tostring(self.display_surface, self.frame_format)

    def write_frames(self):
        root = join(self.root, strftime(self.directory_name_format))
        if not exists(root):
        size = self.display_surface.get_size()
        frames = self.frames
        for ii, frame in enumerate(iter(lambda:,
            path = join(root, "%04i.png" % ii)
            save(frombuffer(frame, size, self.frame_format), path)
        print "wrote video frames to " + root

    def update(self):
        ticks = get_ticks()
        if self.recording and ticks - self.last_frame >= self.framerate:
            self.last_frame = ticks
from pygame.time import get_ticks

from GameChild import GameChild

class TimeFilter(GameChild):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.ticks = self.unfiltered_ticks = self.last_ticks = get_ticks()

    def close(self):
        self.closed = True

    def open(self):
        self.closed = False

    def get_ticks(self):
        return self.ticks

    def get_unfiltered_ticks(self):
        return self.unfiltered_ticks

    def get_last_ticks(self):
        return self.last_ticks

    def get_last_frame_duration(self):
        return self.last_frame_duration

    def update(self):
        ticks = get_ticks()
        self.last_frame_duration = duration = ticks - self.last_ticks
        if not self.closed:
            self.ticks += duration
        self.unfiltered_ticks += duration
        self.last_ticks = ticks
class Vector(list):

    def __init__(self, x=0, y=0):
        list.__init__(self, (x, y))

    def __getattr__(self, name):
        if name == "x":
            return self[0]
        elif name == "y":
            return self[1]

    def __setattr__(self, name, value):
        if name == "x":
            self[0] = value
        elif name == "y":
            self[1] = value
            list.__setattr__(self, name, value)

    def __add__(self, other):
        return Vector(self.x + other[0], self.y + other[1])

    __radd__ = __add__

    def __iadd__(self, other):
        self.x += other[0]
        self.y += other[1]
        return self

    def __sub__(self, other):
        return Vector(self.x - other[0], self.y - other[1])

    def __rsub__(self, other):
        return Vector(other[0] - self.x, other[1] - self.y)

    def __isub__(self, other):
        self.x -= other[0]
        self.y -= other[1]
        return self

    def __mul__(self, other):
        return Vector(self.x * other, self.y * other)

    __rmul__ = __mul__

    def __imul__(self, other):
        self.x *= other
        self.y *= other
        return self

    def apply_to_components(self, function):
        self.x = function(self.x)
        self.y = function(self.y)

    def place(self, x=None, y=None):
        if x is not None:
            self.x = x
        if y is not None:
            self.y = y

    def move(self, dx=0, dy=0):
        if dx:
            self.x += dx
        if dy:
            self.y += dy

    def place_at_origin(self):
        self.x = 0
        self.y = 0
from os import listdir
from os.path import isfile, join
from sys import exc_info, stdout
from glob import glob

from pygame import Color, Rect, Surface, PixelArray
from pygame.image import load
from pygame.transform import flip
from pygame.locals import *

from Animation import Animation
from Vector import Vector

class Sprite(Animation):

    def __init__(self, parent, framerate=None):
        Animation.__init__(self, parent, self.shift_frame, framerate)
        self.frames = []
        self.mirrored = False
        self.alpha = 255
        self.locations = []
        self.framesets = [Frameset(self, framerate=framerate)]
        self.motion_overflow = Vector()
        self.display_surface = self.get_display_surface()

    def __getattr__(self, name):
        if name in ("location", "rect"):
            return self.locations[0]
        if hasattr(Animation, "__getattr__"):
            return Animation.__getattr__(self, name)
        raise AttributeError, name

    def set_frameset(self, identifier):
        if isinstance(identifier, str):
            for ii, frameset in enumerate(self.framesets):
                if == identifier:
                    identifier = ii
        self.frameset_index = identifier
        if self.get_current_frameset().length() > 1:

    def register_interval(self):

    def get_current_frameset(self):
        return self.framesets[self.frameset_index]

    def update_location_size(self):
        size = self.get_current_frameset().rect.size
        for location in self.locations:
            location.size = size

    def set_framerate(self, framerate):

    def load_from_path(self, path, transparency=False, ppa=True, key=None,
                       query=None, omit=False):
        if isfile(path):
            paths = [path]
            if query:
                paths = sorted(glob(join(path, query)))
                paths = [join(path, name) for name in sorted(listdir(path))]
        for path in paths:
            img = load(path)
            if transparency:
                if ppa:
                    frame = img.convert_alpha()
                    frame = self.fill_colorkey(img, key)
                frame = img.convert()
            self.add_frame(frame, omit)

    def fill_colorkey(self, img, key=None):
        if not key:
            key = (255, 0, 255)
        img = img.convert_alpha()
        frame = Surface(img.get_size())
        frame.blit(img, (0, 0))
        return frame

    def add_frame(self, frame, omit=False):
        if not omit:
            frameset = self.get_current_frameset()
            if frameset.length() > 1:

    def shift_frame(self):

    def get_current_frame(self):
        return self.frames[self.get_current_frameset().get_current_id()]

    def move(self, dx=0, dy=0):
        for location in self.locations:
            location.move_ip(dx, dy)

    def reset_motion_overflow(self):
        for location in self.locations:

    def collide(self, other):
        if not isinstance(other, Rect):
            other = other.rect
        for location in self.locations:
            if location.colliderect(other):
                return location

    def mirror(self):
        frames = self.frames
        for ii, frame in enumerate(frames):
             frames[ii] = flip(frame, True, False)
        self.mirrored = not self.mirrored

    def clear_frames(self):
        self.frames = []
        for frameset in self.framesets:
            frameset.order = []

    def add_location(self, topleft=None, offset=(0, 0), count=1, base=0):
        if topleft is not None:
            for ii in xrange(count):
                    self, Rect(topleft, self.locations[0].size)))
            base = self.locations[base]
            current_offset = list(offset)
            for ii in xrange(count):
                current_offset[0] += offset[0]
                current_offset[1] += offset[1]
        return self.locations[-1]

    def fade(self, length=0, out=None, index=None):
        if index is None:
            for location in self.locations:
                fader = location.fader
                fader.start(length, out)
            fader = self.locations[index].fader
            fader.start(length, out)

    def set_alpha(self, alpha):
        self.alpha = alpha
        for frame in self.frames:
        for location in self.locations:

    def add_frameset(self, order=[], framerate=None, name=None, switch=False):
        frameset = Frameset(self, order, framerate, name)
        if switch:
            self.set_frameset(len(self.framesets) - 1)
        return frameset

    def hide(self):
        for location in self.locations:

    def unhide(self):
        for location in self.locations:

    def toggle_hidden(self):
        for location in self.locations:

    def is_hidden(self):
        return all(location.is_hidden() for location in self.locations)

    def remove_locations(self, location=None):
        if location:
            self.locations = self.locations[:1]

    def reverse(self, frameset=None):
        if frameset:
            for frameset in self.framesets:

    def go(self, dx=0, dy=0):
        self.go_vector = Vector(dx, dy)

    def stop(self):
        self.go_vector = Vector()

    def is_going(self):
        return self.go_vector != [0, 0]

    def update(self, areas=None, substitute=None):
        if self.is_going():
        if self.get_current_frameset().length():
            self.draw(areas, substitute)

    def draw(self, areas=None, substitute=None):
        for location in self.locations:
            location.fader.draw(areas, substitute)

class Location(Rect):

    def __init__(self, sprite, rect=(0, 0, 0, 0)):
        self.sprite = sprite
        Rect.__init__(self, rect)
        self.motion_overflow = Vector()
        self.fader = Fader(self)

    def move_ip(self, dx, dy):
        if isinstance(dx, float) or isinstance(dy, float):
            excess = self.update_motion_overflow(dx, dy)
            Rect.move_ip(self, int(dx) + excess[0], int(dy) + excess[1])
            Rect.move_ip(self, dx, dy)

    def update_motion_overflow(self, dx, dy):
        overflow = self.motion_overflow
        overflow.move(dx - int(dx), dy - int(dy))
        excess = map(int, overflow)
        overflow[0] -= int(overflow[0])
        overflow[1] -= int(overflow[1])
        return excess

    def reset_motion_overflow(self):

    def apply_motion_overflow(self, coordinates=None):
        if coordinates is None:
            coordinates = self.topleft
        return self.motion_overflow + coordinates

    def hide(self):
        self.hidden = True

    def unhide(self):
        self.hidden = False

    def toggle_hidden(self):
        self.hidden = not self.hidden

    def is_hidden(self):
        return self.hidden

class Fader(Surface):

    def __init__(self, location):
        self.location = location
        self.time_filter = location.sprite.get_game().time_filter

    def reset(self):
        self.fade_remaining = None

    def init_surface(self):
        Surface.__init__(self, self.location.size)
        if self.location.sprite.get_current_frameset().length():
            background = Surface(self.get_size())
            sprite = self.location.sprite
            key = sprite.get_current_frame().get_colorkey() or (255, 0, 255)
            self.background = background

    def set_alpha(self, alpha=None):
        if alpha is None:
            alpha = self.location.sprite.alpha
        Surface.set_alpha(self, alpha)

    def start(self, length, out=None):
        if self.fade_remaining <= 0:
            alpha = self.get_alpha()
            maximum = self.location.sprite.alpha
            if out is None:
                out = alpha == maximum
            if out and alpha > 0 or not out and alpha < maximum:
                self.fade_length = self.fade_remaining = length
                self.start_time = self.time_filter.get_ticks()
                self.fading_out = out

    def draw(self, areas=None, substitute=None):
        sprite = self.location.sprite
        if substitute is None:
            frame = sprite.get_current_frame()
            frame = substitute
        if self.fade_remaining >= 0:
            self.blit(frame, (0, 0))
            if not self.location.is_hidden():
                if frame.get_colorkey() is None:
                    ratio = self.get_alpha() / 255.0
                    pixels = PixelArray(frame.copy())
                    color = Color(0, 0, 0)
                    for x in xrange(len(pixels)):
                        for y in xrange(len(pixels[0])):
                            h, s, l, a = Color(*frame.unmap_rgb(pixels[x][y])).hsla
                            if a:
                                color.hsla = h, s, l, int(a * ratio)
                                pixels[x][y] = color
                    self.blit_to_display(pixels.make_surface(), areas)
                    del pixels
                    self.blit_to_display(self, areas)
        elif self.fade_remaining is None or self.get_alpha() >= sprite.alpha:
            if self.fade_remaining >= 0:
            if not self.location.is_hidden():
                self.blit_to_display(frame, areas)

    def blit_to_display(self, frame, areas=None):
        if not isinstance(areas, list):
            areas = [areas]
        for area in areas:
            if area:
                dest = area.left + self.location.left, \
                dest = self.location
            self.location.sprite.display_surface.blit(frame, dest, area)

    def update_alpha(self):
        remaining = self.fade_remaining = self.fade_length - \
                    (self.time_filter.get_ticks() - self.start_time)
        ratio = self.fade_length and float(remaining) / self.fade_length
        if not self.fading_out:
            ratio = 1 - ratio
        maximum = self.location.sprite.alpha
        alpha = int(ratio * maximum)
        if alpha > maximum:
            alpha = maximum
        elif alpha < 0:
            alpha = 0

    def clear(self):
        self.blit(self.background, (0, 0))

class Frameset:

    def __init__(self, sprite, order=[], framerate=None, name=None):
        self.sprite = sprite = name
        self.reversed = False
        self.order = []
        self.rect = Rect(0, 0, 0, 0)

    def add_index(self, order):
        if isinstance(order, int):
            order = [order]
        self.order += order

    def set_framerate(self, framerate):
        self.framerate = framerate

    def reset(self):
        self.current_index = 0

    def get_current_id(self):
        return self.order[self.current_index]

    def measure_rect(self):
        max_width, max_height = 0, 0
        frames = self.sprite.frames
        for index in self.order:
            frame = frames[index]
            width, height = frame.get_size()
            max_width = max(width, max_width)
            max_height = max(height, max_height)
        self.rect.size = max_width, max_height

    def shift(self):
        if len(self.order) > 1:

    def increment_index(self, increment=None):
        if increment is None:
            increment = 1 if not self.reversed else -1
        index = self.current_index + increment
        while index < 0:
            index += self.length()
        while index >= self.length():
            index -= self.length()
        self.current_index = index

    def length(self):
        return len(self.order)

    def reverse(self):
        self.reversed = not self.reversed
September 26, 2017

I made a video about my game Picture Processing for Out of Index 2017! Here is the video along with a transcript.

To save memory, video games are designed to repeat graphics. In raster-based games, image files like textures, tiles and sprites are loaded once into memory and drawn repeatedly by the program to create environments, characters, animations and text. In my puzzle game, 8 by 8 pixel tiles are used to create scenes the player has to recreate. For level 1, the tiles are a cloud, a tree, a mushroom, a character, sky, ground and rock.

An algorithm scrambles the tiles so that each tile is in the wrong memory address at the beginning of a level and the screen looks like a graphics glitch. When level 1 begins, the clouds may be where the trees should be, the mushrooms may be floating in the sky and the character may be switched with rock or the ground. The player's task is to put the tiles where they belong by swapping each tile with a tile in another memory address.

There are five levels, in order of difficulty, based on classic video games or classic video game genres.

The name of this game is taken from the Picture Processing Unit, a microprocessor designed by Nintendo for the Nintendo Entertainment System. The PPU is the hardware component responsible for translating image data into video signals for televisions and screens. It does this with a memory of 8 by 8 pixel tile data, which, along with palette and sprite attribute memory, generates each frame of a video game.

Companies often create lofty, evocative titles for hardware and products. What does the name Picture Processing Unit mean if we consider pictures something independent of a video screen? The phrase picture processing evokes the phrase image processing, a technique used to create applications such as automatic facial and emotion recognition. We often anthropomorphize electronic devices, infusing them with intelligence and souls, forgetting how much more infinitely complex the human mind is compared to a digital processor.

The game is named as a reference to Nintendo's microprocessor because the graphics are tile based, but it is also a reference to the players who are image processors, interpreting a picture from something deterministic into something non-deterministic.

The prototype of this game was created for a game jam called A Game By Its Cover where designers created video games based on imagined Nintendo game cartridges created by visual artists for an exhibition called My Famicase.

Picture Processing is based on one of the imagined cartridges from that exhibition. The cartridge's cover depicts a grid of unordered tiles and is described as a game where one inserts a game cartridge, sees a glitching screen, and meditates about the concept of beauty in imperfection. I added the idea that the player meditates into a state of transcendence until they are able to fix the game's graphics by accessing the memory telepathically.