from pygame import display
from pygame.font import Font
from pygame.time import get_ticks, wait

from GameChild import GameChild

class Mainloop(GameChild):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.overflow = 0
        self.frame_count = 1
        self.actual_frame_duration = 0
        self.frames_this_second = 0
        self.last_framerate_display = 0
        self.last_ticks = get_ticks()
        self.stopping = False

    def load_configuration(self):
        config = self.get_configuration("display")
        self.target_frame_duration = config["frame-duration"]
        self.wait_duration = config["wait-duration"]
        self.skip_frames = config["skip-frames"]
        self.show_framerate = config["show-framerate"]
        self.framerate_text_size = config["framerate-text-size"]
        self.framerate_text_color = config["framerate-text-color"]
        self.framerate_text_background = config["framerate-text-background"]
        self.framerate_display_flag = config["framerate-display-flag"]

    def init_framerate_display(self):
        if self.framerate_display_active():
            screen = self.get_screen()
            self.last_framerate_count = 0
            self.framerate_topright = screen.get_rect().topright
            self.display_surface = screen
            self.font = Font(None, self.framerate_text_size)

    def framerate_display_active(self):
        return self.check_command_line(self.framerate_display_flag) or \

    def render_framerate(self):
        text = self.font.render(str(self.last_framerate_count), False,
        rect = text.get_rect()
        rect.topright = self.framerate_topright
        self.framerate_text = text
        self.framerate_text_rect = rect

    def run(self):
        while not self.stopping:
        self.stopping = False

    def advance_frame(self):
        refresh = False
        while self.frame_count > 0:
            refresh = True
            if self.framerate_display_active():
            self.frame_count -= 1
            if not self.skip_frames:
        if refresh:

    def update_frame_duration(self):
        last_ticks = self.last_ticks
        actual_frame_duration = get_ticks() - last_ticks
        last_ticks = get_ticks()
        while actual_frame_duration < self.target_frame_duration:
            actual_frame_duration += get_ticks() - last_ticks
            last_ticks = get_ticks()
        self.actual_frame_duration = actual_frame_duration
        self.last_ticks = last_ticks

    def update_overflow(self):
        self.frame_count = 1
        target_frame_duration = self.target_frame_duration
        overflow = self.overflow
        overflow += self.actual_frame_duration - target_frame_duration
        while overflow > target_frame_duration:
            self.frame_count += 1
            overflow -= target_frame_duration
        overflow = self.overflow

    def update_framerate(self):
        count = self.frames_this_second + 1
        if get_ticks() - self.last_framerate_display > 1000:
            if count != self.last_framerate_count:
                self.last_framerate_count = count
            self.last_framerate_display = get_ticks()
            count = 0
        self.display_surface.blit(self.framerate_text, self.framerate_text_rect)
        self.frames_this_second = count

    def stop(self):
        self.stopping = True
from os import makedirs
from os.path import exists, join
from sys import exc_info
from time import strftime

from pygame import image

from GameChild import *
from Input import *

class ScreenGrabber(GameChild):

    def __init__(self, game):
        GameChild.__init__(self, game)
        self.delegate = self.get_delegate()

    def load_configuration(self):
        config = self.get_configuration("screen-captures")
        self.save_path = config["path"]
        self.file_name_format = config["file-name-format"]
        self.file_extension = config["file-extension"]

    def save_display(self, event):
        if, "capture-screen"):
            directory = self.save_path
                if not exists(directory):
                name = self.build_name()
                path = join(directory, name)
                capture =, path)
                self.print_debug("Saved screen capture to %s" % (path))
                self.print_debug("Couldn't save screen capture to %s, %s" %\
                                 (directory, exc_info()[1]))

    def build_name(self):
        return "{0}.{1}".format(strftime(self.file_name_format),
from random import randint
from math import sin, cos, atan2, radians, sqrt

from pygame import Surface
from pygame.locals import *

def get_step(start, end, speed):
    x0, y0 = start
    x1, y1 = end
    angle = atan2(x1 - x0, y1 - y0)
    return speed * sin(angle), speed * cos(angle)

def get_endpoint(start, angle, magnitude):
    """clockwise, 0 is up"""
    x0, y0 = start
    dx, dy = get_delta(angle, magnitude)
    return x0 + dx, y0 + dy

def get_delta(angle, magnitude):
    angle = radians(angle)
    return sin(angle) * magnitude, -cos(angle) * magnitude

def rotate_2d(point, center, angle, translate_angle=True):
    if translate_angle:
        angle = radians(angle)
    x, y = point
    cx, cy = center
    return cos(angle) * (x - cx) - sin(angle) * (y - cy) + cx, \
           sin(angle) * (x - cx) + cos(angle) * (y - cy) + cy

def get_points_on_circle(center, radius, count, offset=0):
    angle_step = 360.0 / count
    points = []
    current_angle = 0
    for _ in xrange(count):
        points.append(get_point_on_circle(center, radius,
                                          current_angle + offset))
        current_angle += angle_step
    return points

def get_point_on_circle(center, radius, angle, translate_angle=True):
    if translate_angle:
        angle = radians(angle)
    return center[0] + sin(angle) * radius, center[1] - cos(angle) * radius

def get_range_steps(start, end, count):
    for ii in xrange(count):
        yield start + (end - start) * ii / float(count - 1)

def get_distance(p0, p1):
    return sqrt((p0[0] - p1[0]) ** 2 + (p0[1] - p1[1]) ** 2)

def place_in_rect(rect, incoming, contain=True, *args):
    while True: = randint(0, rect.w), randint(0, rect.h)
        if not contain or rect.contains(incoming):
            collides = False
            for inner in args:
                if inner.colliderect(incoming):
                    collides = True
            if not collides:

# from
def get_intersection(p0, p1, p2, p3):
    x0, y0 = p0
    x1, y1 = p1
    x2, y2 = p2
    x3, y3 = p3
    a0 = y1 - y0
    b0 = x0 - x1
    c0 = x1 * y0 - x0 * y1
    r2 = a0 * x2 + b0 * y2 + c0
    r3 = a0 * x3 + b0 * y3 + c0
    if r2 != 0 and r3 != 0 and r2 * r3 > 0:
        return None
    a1 = y3 - y2
    b1 = x2 - x3
    c1 = x3 * y2 - x2 * y3
    r0 = a1 * x0 + b1 * y0 + c1
    r1 = a1 * x1 + b1 * y1 + c1
    if r0 != 0 and r1 != 0 and r0 * r1 > 0:
        return None
    denominator = a0 * b1 - a1 * b0
    if denominator == 0:
        return (x0 + x1 + x2 + x3) / 4, (y0 + y1 + y2 + y3) / 4
    if denominator < 0:
        offset = -denominator / 2
        offset = denominator / 2
    numerator = b0 * c1 - b1 * c0
    x = ((-1, 1)[numerator < 0] * offset + numerator) / denominator
    numerator = a1 * c0 - a0 * c1
    y = ((-1, 1)[numerator < 0] * offset + numerator) / denominator
    return x, y

def collide_line_with_rect(rect, p0, p1):
    for line in ((rect.topleft, rect.topright),
                 (rect.topright, rect.bottomright),
                 (rect.bottomright, rect.bottomleft),
                 (rect.bottomleft, rect.topleft)):
        if get_intersection(p0, p1, *line):
            return True

def render_box(font, text, antialias, color, background=None, border=None,
               border_width=1, padding=0):
    surface = font.render(text, antialias, color, background)
    if padding:
        if isinstance(padding, int):
            padding = [padding] * 2
        padding = [x * 2 for x in padding]
        rect = surface.get_rect()
        padded_surface = Surface(rect.inflate(padding).size, SRCALPHA)
        if background is not None:
            padded_surface.fill(background) = padded_surface.get_rect().center
        padded_surface.blit(surface, rect)
        surface = padded_surface
    if border is not None:
        if isinstance(border_width, int):
            border_width = [border_width] * 2
        border_width = [x * 2 for x in border_width]
        rect = surface.get_rect()
        bordered_surface = Surface(rect.inflate(border_width).size)
        bordered_surface.fill(border) = bordered_surface.get_rect().center
        bordered_surface.blit(surface, rect)
        surface = bordered_surface
    return surface
September 26, 2017

I made a video about my game Picture Processing for Out of Index 2017! Here is the video along with a transcript.

To save memory, video games are designed to repeat graphics. In raster-based games, image files like textures, tiles and sprites are loaded once into memory and drawn repeatedly by the program to create environments, characters, animations and text. In my puzzle game, 8 by 8 pixel tiles are used to create scenes the player has to recreate. For level 1, the tiles are a cloud, a tree, a mushroom, a character, sky, ground and rock.

An algorithm scrambles the tiles so that each tile is in the wrong memory address at the beginning of a level and the screen looks like a graphics glitch. When level 1 begins, the clouds may be where the trees should be, the mushrooms may be floating in the sky and the character may be switched with rock or the ground. The player's task is to put the tiles where they belong by swapping each tile with a tile in another memory address.

There are five levels, in order of difficulty, based on classic video games or classic video game genres.

The name of this game is taken from the Picture Processing Unit, a microprocessor designed by Nintendo for the Nintendo Entertainment System. The PPU is the hardware component responsible for translating image data into video signals for televisions and screens. It does this with a memory of 8 by 8 pixel tile data, which, along with palette and sprite attribute memory, generates each frame of a video game.

Companies often create lofty, evocative titles for hardware and products. What does the name Picture Processing Unit mean if we consider pictures something independent of a video screen? The phrase picture processing evokes the phrase image processing, a technique used to create applications such as automatic facial and emotion recognition. We often anthropomorphize electronic devices, infusing them with intelligence and souls, forgetting how much more infinitely complex the human mind is compared to a digital processor.

The game is named as a reference to Nintendo's microprocessor because the graphics are tile based, but it is also a reference to the players who are image processors, interpreting a picture from something deterministic into something non-deterministic.

The prototype of this game was created for a game jam called A Game By Its Cover where designers created video games based on imagined Nintendo game cartridges created by visual artists for an exhibition called My Famicase.

Picture Processing is based on one of the imagined cartridges from that exhibition. The cartridge's cover depicts a grid of unordered tiles and is described as a game where one inserts a game cartridge, sees a glitching screen, and meditates about the concept of beauty in imperfection. I added the idea that the player meditates into a state of transcendence until they are able to fix the game's graphics by accessing the memory telepathically.

↠ RSS Feed ↞