from os import makedirs, walk, sep, remove
from os.path import join, dirname, basename, exists
from shutil import rmtree, copy, rmtree
from itertools import chain
from zipfile import ZipFile

import py2exe

from Setup import Setup

class SetupWin(Setup):

    def __init__(self):
        Setup.__init__(self)
        self.replace_isSystemDLL()

    def replace_isSystemDLL(self):
        origIsSystemDLL = py2exe.build_exe.isSystemDLL
        def isSystemDLL(pathname):
            if basename(pathname).lower() in ("libogg-0.dll", "sdl_ttf.dll"):
                return 0
            return origIsSystemDLL(pathname)
        py2exe.build_exe.isSystemDLL = isSystemDLL

    def setup(self):
        config = self.config.get_section("setup")
	windows = [{}]
	if config["init-script"]:
	    windows[0]["script"] = config["init-script"]
	if config["windows-icon-path"]:
	    windows[0]["icon-resources"] = [(1, config["windows-icon-path"])]
        Setup.setup(self, windows,
                    {"py2exe": {"packages": self.build_package_list(),
                                "dist_dir": config["windows-dist-path"]}})
        rmtree("build")
        self.copy_data_files()
        self.create_archive()

    def copy_data_files(self):
	root = self.config.get("setup", "windows-dist-path")
        for path in chain(*zip(*self.build_data_map())[1]):
            dest = join(root, dirname(path))
            if not exists(dest):
                makedirs(dest)
            copy(path, dest)
	self.include_readme(root)

    def include_readme(self, root):
	name = "README"
	if exists(name):
	    readme = open(name, "r")
	    reformatted = open(join(root, name + ".txt"), "w")
	    for line in open(name, "r"):
	    	reformatted.write(line.rstrip() + "\r\n")

    def create_archive(self):
        config = self.config.get_section("setup")
        title = self.translate_title() + "-" + config["version"] + "-win"
        archive_name = title + ".zip"
        archive = ZipFile(archive_name, "w")
        destination = config["windows-dist-path"]
        for root, dirs, names in walk(destination):
            for name in names:
                path = join(root, name)
                archive.write(path, path.replace(destination, title + sep))
        archive.close()
        copy(archive_name, "dist")
        remove(archive_name)
        rmtree(destination)
from random import randint
from math import sin, log, pi
from array import array

from pygame.mixer import Sound, get_init

class Samples(Sound):

    def __init__(self):
        self.set_amplitude()
        Sound.__init__(self, self.build())

    def set_amplitude(self):
        self.amplitude = (1 << (self.get_sample_width() * 8 - 1)) - 1

    def get_sample_width(self):
        return abs(get_init()[1] / 8)

    def build(self):
        pass

    def get_empty_array(self, length):
        return array(self.get_array_typecode(), [0] * length)

    def get_array_typecode(self):
        return [None, "b", "h"][self.get_sample_width()]


class Note(Samples):

    base_frequency = 440.0
    base_octave = 4
    base_name = "A"
    names = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
    SQUARE, TRIANGLE, SAW, SINE, DIRTY = range(5)

    def __init__(self, name=None, octave=4, frequency=None, shape=SQUARE,
                 volume=1.0):
        names = self.names
        self.shape = shape
        if frequency is None:
            self.name = name
            self.octave = octave
            self.set_frequency()
        elif name is None:
            self.frequency = float(frequency)
            self.set_name_and_octave()
        Samples.__init__(self)
        self.set_volume(volume)

    def set_frequency(self):
        name, octave = self.name, self.octave
        names = self.names
        octave_length = len(names)
        offset = (octave - self.base_octave) * octave_length + \
                 names.index(name) - names.index(self.base_name)
        self.frequency = self.base_frequency * 2 ** \
                         (offset / float(octave_length))

    def set_name_and_octave(self):
        names = self.names
        octave_length = len(names)
        offset = int(round(log(self.frequency / self.base_frequency, 2) * \
                           octave_length)) + names.index(self.base_name)
        self.octave = self.base_octave + offset / octave_length
        self.name = names[offset % octave_length]

    def __repr__(self):
        return "%s%i %.2f" % (self.name, self.octave, self.frequency)

    def build(self):
        period = int(round(get_init()[0] / self.frequency))
        samples = self.get_empty_array(period)
        shape = self.shape
        if shape == self.TRIANGLE:
            self.store_triangle_wave(samples, period)
        elif shape == self.SAW:
            self.store_saw_wave(samples, period)
        elif shape == self.SINE:
            self.store_sine_wave(samples, period)
        elif shape == self.DIRTY:
            self.store_dirty_wave(samples)
        else:
            self.store_square_wave(samples, period)
        return samples

    def store_triangle_wave(self, samples, period):
        amplitude = self.amplitude
        coefficient = 4 * amplitude / float(period - 1)
        for time in xrange(int(round(period / 2.0))):
            y = int((coefficient * time) - amplitude)
            samples[time] = y
            samples[-time - 1] = y

    def store_saw_wave(self, samples, period):
        amplitude = self.amplitude
        for time in xrange(period):
            samples[time] = int(2 * amplitude / float(period - 1) * time - \
                              amplitude)

    def store_sine_wave(self, samples, period):
        amplitude = self.amplitude
        for time in xrange(period):
            samples[time] = int(round(sin(time / (period / pi / 2)) * \
                                      amplitude))

    def store_dirty_wave(self, samples):
        amplitude = self.amplitude
        for time in xrange(len(samples)):
            samples[time] = randint(-amplitude, amplitude)

    def store_square_wave(self, samples, period):
        amplitude = self.amplitude
        for time in xrange(period):
            if time < period / 2:
                samples[time] = amplitude
            else:
                samples[time] = -amplitude

    def play(self, maxtime=0, fadeout=None, panning=None, fade_in=0):
        channel = Samples.play(self, -1, maxtime, fade_in)
        if fadeout:
            self.fadeout(fadeout)
        if channel and panning:
            channel.set_volume(*panning)
        return channel
import pygame
from pygame.locals import *

from GameChild import GameChild
from Mainloop import Mainloop
from Audio import Audio
from Display import Display
from Configuration import Configuration
from Delegate import Delegate
from Input import Input
from ScreenGrabber import ScreenGrabber
from Profile import Profile
from VideoRecorder import VideoRecorder
from Interpolator import Interpolator
from TimeFilter import TimeFilter

class Game(GameChild):

    resource_path = None

    def __init__(self, config_rel_path=None, type_declarations=None):
        self.profile = Profile(self)
        GameChild.__init__(self)
        self.print_debug(pygame.version.ver)
        self.config_rel_path = config_rel_path
        self.type_declarations = type_declarations
        self.set_configuration()
        pygame.init()
        self.set_children()
        self.subscribe(self.end, QUIT)
        self.subscribe(self.end)
        self.delegate.enable()

    def set_configuration(self):
        self.configuration = Configuration(self.config_rel_path,
                                           self.resource_path,
                                           self.type_declarations)

    def set_children(self):
        self.time_filter = TimeFilter(self)
        self.delegate = Delegate(self)
        self.display = Display(self)
        self.mainloop = Mainloop(self)
        self.input = Input(self)
        self.audio = Audio(self)
        self.screen_grabber = ScreenGrabber(self)
        self.video_recorder = VideoRecorder(self)
        self.interpolator = Interpolator(self)

    def frame(self):
        self.time_filter.update()
        self.delegate.dispatch()
        if not self.interpolator.is_gui_active():
            self.update()
        else:
            self.interpolator.gui.update()
        if self.video_recorder.requested:
            self.video_recorder.update()

    def run(self):
        self.mainloop.run()

    def update(self):
        pass

    def blit(self, source, destination, area=None, special_flags=0):
        self.get_screen().blit(source, destination, area, special_flags)

    def get_rect(self):
        return self.get_screen().get_rect()

    def end(self, evt):
        if evt.type == QUIT or self.delegate.compare(evt, "quit"):
            self.mainloop.stop()
            self.profile.end()
54.224.108.238
54.224.108.238
54.224.108.238
 
September 26, 2017

I made a video about my game Picture Processing for Out of Index 2017! Here is the video along with a transcript.

To save memory, video games are designed to repeat graphics. In raster-based games, image files like textures, tiles and sprites are loaded once into memory and drawn repeatedly by the program to create environments, characters, animations and text. In my puzzle game, 8 by 8 pixel tiles are used to create scenes the player has to recreate. For level 1, the tiles are a cloud, a tree, a mushroom, a character, sky, ground and rock.

An algorithm scrambles the tiles so that each tile is in the wrong memory address at the beginning of a level and the screen looks like a graphics glitch. When level 1 begins, the clouds may be where the trees should be, the mushrooms may be floating in the sky and the character may be switched with rock or the ground. The player's task is to put the tiles where they belong by swapping each tile with a tile in another memory address.

There are five levels, in order of difficulty, based on classic video games or classic video game genres.

The name of this game is taken from the Picture Processing Unit, a microprocessor designed by Nintendo for the Nintendo Entertainment System. The PPU is the hardware component responsible for translating image data into video signals for televisions and screens. It does this with a memory of 8 by 8 pixel tile data, which, along with palette and sprite attribute memory, generates each frame of a video game.

Companies often create lofty, evocative titles for hardware and products. What does the name Picture Processing Unit mean if we consider pictures something independent of a video screen? The phrase picture processing evokes the phrase image processing, a technique used to create applications such as automatic facial and emotion recognition. We often anthropomorphize electronic devices, infusing them with intelligence and souls, forgetting how much more infinitely complex the human mind is compared to a digital processor.

The game is named as a reference to Nintendo's microprocessor because the graphics are tile based, but it is also a reference to the players who are image processors, interpreting a picture from something deterministic into something non-deterministic.

The prototype of this game was created for a game jam called A Game By Its Cover where designers created video games based on imagined Nintendo game cartridges created by visual artists for an exhibition called My Famicase.

Picture Processing is based on one of the imagined cartridges from that exhibition. The cartridge's cover depicts a grid of unordered tiles and is described as a game where one inserts a game cartridge, sees a glitching screen, and meditates about the concept of beauty in imperfection. I added the idea that the player meditates into a state of transcendence until they are able to fix the game's graphics by accessing the memory telepathically.


↠ RSS Feed ↞